Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\operatorname{Bis}(\mu-N, N$-dimethyldithiocarbamato$\left.\kappa^{3} S, S^{\prime}: S^{\prime}\right)$ bis[(dimethoxyphenyl-phosphane- $\kappa P)(N, N$-dimethyl-dithiocarbamato- $\left.\kappa^{2} S, S^{\prime}\right)$ cobalt(III)] bis(hexafluorophosphate)

Takayoshi Suzuki, ${ }^{\text {a* }}$ Hideo D. Takagi ${ }^{\text {b }}$ and Kazuo Kashiwabara ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, and ${ }^{\text {b }}$ Department of Chemistry, Graduate School of Science,
Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Correspondence e-mail: suzuki@chem.sci.osaka-u.ac.jp

Received 28 August 2001
Accepted 31 October 2001
Online 23 January 2002
Purple prismatic crystals of the title compound, $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)_{4}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$, were obtained by repeated recrystallization of trans- $\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}\right)_{2}\right] \mathrm{PF}_{6}$ from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ and then from $\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; during recrystallization one of the $\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$ ligands was dissociated from the $\mathrm{Co}^{\mathrm{III}}$ center and the resulting Co ${ }^{\text {III }}$ complex fragment underwent dimerization. The complex cation has a dinuclear structure bridged by one S atom of each of two of the N, N-dimethyldithiocarbamate ligands, and has crystallographically imposed C_{2} symmetry. Two $\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$ ligands are coordinated at the transoid positions of the $\mathrm{Co}_{2}(\mu-$ $\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)_{2}$ moiety, with $\mathrm{Co}-\mathrm{P}$ bond lengths of 2.1921 (11) \AA.

Comment

We have undertaken the systematic syntheses and comparison of the structures, together with the chemical and spectroscopic properties, of several series of cobalt(III) complexes containing monodentate P-donor ligands, such as $\left[\mathrm{Co}(\mathrm{acac})_{2}(\mathrm{P} \text {-ligand })_{2}\right]^{+} \quad($ acac $=$ pentane-2,4-dionate $)$ and $\left[\mathrm{Co}(\mathrm{dtc})_{2}(\mathrm{P}-\text { ligand })_{2}\right]^{+}(\mathrm{dtc}=N, N$-dimethyldithiocarbamate $)$. It was possible to synthesize a series of dtc complexes with diphenylphosphine (Suzuki, Iwatsuki et al., 2001), phosphites (Matsui et al., 1993), phosphonites and phosphinites (Kashiwabara et al., 2002), as well as tertiary phosphines (Suzuki, Kashiwamura \& Kashiwabara, 2001), while only tertiary phosphine complexes have been prepared for the series of acac complexes (Suzuki et al., 1998, 2000). It was suggested that dtc is the best ligand to stabilize the $\mathrm{Co}^{\mathrm{III}}-\mathrm{P}$ bond due to its steric compactness and electronic softness (Suzuki, Kashiwamura et al., 2001).

The title compound, $\left[\mathrm{Co}_{2}\{\mu(S)-\mathrm{dtc}\}_{2}(\mathrm{dtc})_{2}-\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right\}_{2}\right]$ $\left(\mathrm{PF}_{6}\right)_{2}$, (I), was the unexpected product of the attempted recrystallization of trans-[Co(dtc) $\left.)_{2}\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right\}_{2}\right] \mathrm{PF}_{6}$, (II), in the course of which the mononuclear molecules of (II) each lost one $\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$ ligand thus permitting the formation of dinuclear complex (I) in which the Co centres are bridged by one S atom of each of two dtc ligands (Fig. 1).

The coordination mode for dithiocarbamates $\left(R_{2} \mathrm{dtc}\right.$: $R_{2} \mathrm{NCS}_{2}{ }^{-}$) bridging two metal centers by one of the S atoms, $\mu_{2}(S)-R_{2} \mathrm{dtc}-\kappa^{3} S: S, S^{\prime}$, has often been observed; the April 2001 release of the Cambridge Structural Database (Allen \& Kennard, 1993) contains more than 60 reports of compounds with such an R_{2} dtc coordination mode. Typical examples involving $\operatorname{bis}\left\{\mu_{2}(S)-R_{2}\right.$ dtc- $\left.\kappa^{3} S, S, S^{\prime}\right\}$ ligands are the dinuclear complexes composed of two edge-sharing square-pyramidal polyhedra, each of which consists of the square-planar $M^{\text {II }}(\mathrm{dtc})_{2}(M=\mathrm{Mo}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}$ or Hg$)$ moiety and an apical bridging S atom (types $A 1$ and $A 2$ in the scheme below, in which bold lines represent $R_{2} \mathrm{dtc}$ chelates). $\left[\mathrm{Co}_{2}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{5}\right] \mathrm{BF}_{4}$ (Hendrickson et al., 1975) is the only example within $\mathrm{Co}^{\mathrm{III}}$ complexes, and the structure of the cation is illustrated in the scheme below as type B; it consists of two edge-sharing octahedra, $\left[\mathrm{Co}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{3}\right]$ and cis- $\left[\mathrm{Co}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{2}\right]^{+}$. This type of dinuclear species was also found for $\left[\mathrm{Rh}_{2}(\mathrm{dtc})_{5}\right] \mathrm{BF}_{4}$ (Hendrickson et al., 1976) and $\left[\operatorname{Ru}_{2}\left({ }^{i} \operatorname{Pr}_{2} \mathrm{dtc}\right)_{5}\right]^{+}$(Raston \& White, 1975a). The structure of the complex cation in (I) can be categorized as type $C 1$; two $\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$ ligands are sited at the transoid positions of two edge-sharing octahedra. The complex cation has C_{2} symmetry, so it can be considered as a type $A 1$ species with two monodentate ligands added. This kind of structure has already been found in $\left[\mathrm{Ru}_{2^{-}}\right.$ $\left.\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{4}(\mathrm{CO})_{2}\right]$ (Raston \& White, 1975b) and $\left[\mathrm{Re}_{2}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{4}{ }^{-}\right.$ $\left.\left\{\mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$ (Abram, 1999). Interestingly, all three examples of the $\left[M_{2}\left(\mu-R_{2} \mathrm{dtc}\right)_{2}\left(R_{2} \mathrm{dtc}\right)_{2} L_{2}\right]$ structure are of type $C 1$. There are four other possible isomers for the $\left[M_{2}(\mu-\right.$ $\left.\left.R_{2} \mathrm{dtc}\right)_{2}\left(R_{2} \mathrm{dtc}\right)_{2} L_{2}\right]$ type of dinuclear complex (i.e. types $C 2$, $C 3, C 4$ and C5), but no complex having these structures has been reported to date. Furthermore, for the related $\left[M_{2}(\mu-\right.$ $\left.\left.R_{2} \mathrm{dtc}\right)_{2} L_{6}\right]$ type dinuclear complexes, $\left[\mathrm{Pt}_{2}(\mu \text {-dtc })_{2}\left(\mathrm{CH}_{3}\right)_{6}\right]$
(Heard et al., 2000), $\left[\mathrm{Ru}_{2}(\mu \text {-dtc })_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ (Landgrafe \& Sheldrick, 1994) and $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{Et}_{2} \mathrm{dtc}\right)_{2}(\mathrm{CO})_{4}(\mathrm{NO})_{2}\right]$ (Shiu et al., 1995), all the reported structures are of type $D 1$ rather than type $D 2$.

The two bridging $\mathrm{Co}-\mathrm{S}$ bond lengths in (I) are 2.2757 (10) and 2.3865 (11) \AA. The latter [$\mathrm{Co}-\mathrm{S} 1\left(-x, y, \frac{1}{2}-z\right)$ bond] is appreciably longer than those $[2.298$ (8) and 2.333 (8) \AA] in $\left[\mathrm{Co}_{2}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{5}\right] \mathrm{BF}_{4}$ (Hendrickson et al., 1975), suggesting that the bridge which forms the dinuclear structure is not as strong in (I) as it is in $\left[\mathrm{Co}_{2}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{5}\right] \mathrm{BF}_{4}$. The structure of the $\mathrm{Co}(\mathrm{dtc})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right\}$ moiety is similar to that of the $\mathrm{Co}(\mathrm{dtc})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$ moiety in trans-[Co(dtc) $\left.)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BF}_{4}$ (Suzuki, Kashiwamura \& Kashiwabara, 2001), the phenyl ring being located directly above one of the S atoms, S4 in (I), with

Figure 1
A perspective view of the complex dication in (I). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $-x, y, \frac{1}{2}-z$.]
a stacking interaction to the dtc plane. The dihedral angle between the phenyl ring and the dtc mean plane is $19.6(2)^{\circ}$. The $\mathrm{S}-\mathrm{Co}-\mathrm{S}$ bite angles, 77.68 (4) and $77.10(4)^{\circ}$, of dtc in (I) are comparable to those in trans-[Co(dtc) $\left.)_{2}\left(\mathrm{PMe}_{3-n} \mathrm{Ph}_{n}\right)_{2}\right] \mathrm{BF}_{4}$ (Suzuki, Kashiwamura \& Kashiwabara, 2001) and $\left[\mathrm{Co}(\mathrm{dtc})_{3}\right]$ (Iwasaki \& Kobayashi, 1980).

The Co-P bond lengths in (I) are 2.1921 (11) A. There are only a few reports of structural analyses of $\mathrm{Co}^{\mathrm{III}}$ complexes containing $\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$. Except for four organometallic $\mathrm{Co}^{\text {III }}$ complexes, complex (I) is only the third example of such nonorganometallic $\mathrm{Co}^{\mathrm{III}}-\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$ complexes, the other two being trans $-\left[\mathrm{Co}(\mathrm{Hdmg})_{2} \mathrm{Cl}\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right\}\right]$ (Hdmg is the dimethylglyoximate monoanion; Bresciani-Pahor et al., 1982) and cis- $\left[\mathrm{Co}(\mathrm{dtc})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right\}_{2}\right] \mathrm{PF}_{6}$ (Kashiwabara et al., 2002), where the $\mathrm{Co}-\mathrm{P}$ bond lengths are reported as 2.213 (2) \AA and an average of 2.218 (3) \AA, respectively.

Experimental

Reaction of $\mathrm{Co}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}$ and tetramethylthiuram disulfide (molar ratio 2:4:1) in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded cis-[$\mathrm{Co}(\mathrm{dtc})_{2}{ }^{-}$ $\left\{\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}_{2}\right] \mathrm{BF}_{4}$, (III). UV irradiation for 5 h of an MeOH solution of (III) and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ afforded thin brown plate-like crystals of the trans isomer, (II). Repeated recrystallization of (II) from $\mathrm{CH}_{3} \mathrm{CN}$ / $\mathrm{Et}_{2} \mathrm{O}$ and then from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave purple prismatic crystals of (I) whose ${ }^{1} \mathrm{H}$ NMR spectrum was consistent with the dinuclear structure. The ${ }^{1} \mathrm{H}$ NMR data of (I) in $\mathrm{CD}_{3} \mathrm{CN}(303 \mathrm{~K}, 400 \mathrm{MHz})$ are: $\delta 2.852\left(s,-\mathrm{NCH}_{3}, 3 \mathrm{H}\right), 2.903\left(s,-\mathrm{NCH}_{3}, 3 \mathrm{H}\right), 3.235\left(s,-\mathrm{NCH}_{3}, 3 \mathrm{H}\right)$, $3.273\left(s,-\mathrm{NCH}_{3}, 3 \mathrm{H}\right), 3.825\left(d,-\mathrm{OCH}_{3}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 3.915(d,-$ $\left.\mathrm{OCH}_{3}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}\right)$, and $7.40-7.71\left(m,-\mathrm{C}_{6} \mathrm{H}_{5}, 5 \mathrm{H}\right)$.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Co-P1	2.1921 (11)	S2-C1	1.696 (4)
Co-S1	2.2757 (10)	S3-C4	1.716 (4)
Co-S2	2.2493 (11)	S4-C4	1.713 (4)
Co-S3	2.2633 (11)	P1-O1	1.594 (4)
Co-S4	2.2793 (11)	$\mathrm{P} 1-\mathrm{O} 2$	1.578 (3)
$\mathrm{Co}-\mathrm{S} 1^{\text {i }}$	2.3865 (11)	P1-C9	1.804 (4)
S1-C1	1.766 (4)		
$\mathrm{P} 1-\mathrm{Co}-\mathrm{S} 2$	88.43 (4)	$\mathrm{P} 1-\mathrm{Co}-\mathrm{S} 1^{\text {i }}$	175.94 (4)
P1-Co-S3	86.99 (4)	S1-Co-S1 ${ }^{\text {i }}$	83.41 (4)
S2-Co-S3	102.76 (4)	C1-S1-Co	84.86 (12)
P1-Co-S1	97.13 (4)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Co}^{\text {i }}$	108.26 (12)
S2-Co-S1	77.68 (4)	$\mathrm{Co}-\mathrm{S} 1-\mathrm{Co}^{\text {i }}$	95.11 (4)
P1-Co-S4	93.06 (4)	C1-S2-Co	87.30 (13)
S3-Co-S4	77.10 (4)	C4-S3-Co	85.92 (12)
S1-Co-S4	102.35 (4)	C4-S4-Co	85.49 (13)

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)_{4}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$	$D_{x}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1228.91$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 24
$a=26.454(3) \AA$	reflections
$b=14.499(3) \AA$	$\theta=14.7-15.0^{\circ}$
$c=14.517(3) \AA$	$\mu=1.26 \mathrm{~mm}^{-1}$
$\beta=120.276(10)^{\circ}$	$T=296(2) \mathrm{K}$
$V=4808.8(16) \AA^{3}$	Square prism, purple
$Z=4$	$0.28 \times 0.26 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.744, \quad T_{\text {max }}=0.798$
7153 measured reflections
7017 independent reflections
3741 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.164$
$S=1.04$
7017 reflections
284 parameters
H-atom parameters constrained (see text below)

Methyl H atoms attached to the N atoms of the dimethyldithiocarbamate ligands were located from ΔF syntheses and refined as parts of rigid groups which were allowed to rotate but not tip or distort, and with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.96$ (for methyl H) or $0.93 \AA$ (for phenyl H), and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: MSC/AFC Diffractometer Control Software (Rigaku, 1985); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1970); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1475). Services for accessing these data are described at the back of the journal.

References

Abram, U. (1999). Z. Anorg. Allg. Chem. 625, 839-841.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Bresciani-Pahor, N., Randaccio, L. \& Toscano, P. J. (1982). J. Chem. Soc. Dalton Trans. pp. 1559-1563.
Heard, P. J., Kite, K., Nielsen, J. S. \& Tocher, D. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Hendrickson, A. R., Martin, R. L. \& Taylor, D. (1975). J. Chem. Soc. Dalton Trans. pp. 2182-2188.
Hendrickson, A. R., Martin, R. L. \& Taylor, D. (1976). Aust. J. Chem. 29, 269273.

Iwasaki, H. \& Kobayashi, K. (1980). Acta Cryst. B36, 1657-1659.
Johnson, C. K. (1970). ORTEP. Report ORNL-3794, 2nd revison. Oak Ridge National Laboratory, Tennessee, USA.
Kashiwabara, K., Kashiwamura, S., Iwatsuki, S., Suzuki, T. \& Takagi, H. D. (2002). In preparation.

Landgrafe, C. \& Sheldrick, W. S. (1994). J. Chem. Soc. Dalton Trans. pp. 18851895.

Matsui, H., Kita, M., Kashiwabara, K. \& Fujita, J. (1993). Bull. Chem. Soc. Jpn, 66, 1140-1148.
Molecular Structure Corporation \& Rigaku (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Raston, C. L. \& White, A. H. (1975a). J. Chem. Soc. Dalton Trans. pp. 24102418.

Raston, C. L. \& White, A. H. (1975b). J. Chem. Soc. Dalton Trans. pp. 24182422.

Rigaku (1985). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shiu, K.-B., Lin, S.-T., Fung, D.-W., Chan, T.-J., Peng, S.-M., Cheng, M.-C. \& Chou, J. L. (1995). Inorg. Chem. 34, 854-863.
Suzuki, T., Iwatsuki, S., Takagi, H. D. \& Kashiwabara, K. (2001). Chem. Lett. pp. 1068-1069.
Suzuki, T., Kaizaki, S. \& Kashiwabara, K. (2000). Inorg. Chim. Acta, 298, 131140.

Suzuki, T., Kashiwabara, K., Kita, M., Fujita, J. \& Kaizaki, S. (1998). Inorg. Chim. Acta, 281, 77-84.
Suzuki, T., Kashiwamura, S. \& Kashiwabara, K. (2001). Bull. Chem. Soc. Jpn, 74, 2349-2359.

